Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 26
Filtre
1.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.06.16.23291450

Résumé

Background: SARS-CoV-2 has been well studied in resource-rich areas but many questions remain about effects of infection in African populations, particularly in vulnerable groups such as pregnant women. Methods: We describe SARS-CoV-2 immunoglobulin (Ig) G and IgM antibody responses and clinical outcomes in mother-infant dyads enrolled in malaria chemoprevention trials in Uganda. Results: From December 2020 to February 2022, among 400 unvaccinated pregnant women, serologic assessments revealed that 128 (32%) were seronegative for anti-SARS-CoV-2 IgG and IgM at enrollment and delivery, 80 (20%) were infected either prior to or early in pregnancy, and 192 (48%) were infected or re-infected with SARS-CoV-2 during pregnancy. We observed preferential binding of plasma IgG to Wuhan-Hu-1-like antigens in individuals seroconverting up to early 2021, and to Delta variant antigens in a subset of individuals in mid-2021. Breadth of IgG binding to all variants improved over time. No participants experienced severe respiratory illness during the study. SARS-CoV-2 infection in early pregnancy was associated with lower median length-for-age Z-score at age 3 months compared with no infection or late pregnancy infection (-1.54 versus -0.37 and -0.51, p=0.009). Conclusion: Pregnant Ugandan women experienced high levels of SARS-CoV-2 infection without severe respiratory illness. Variant-specific serology testing demonstrated evidence of antibody affinity maturation at the population level. Early gestational SARS-CoV-2 infection was associated with shorter stature in early infancy.


Sujets)
COVID-19 , Paludisme , Insuffisance respiratoire , Infections
2.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.03.30.23287923

Résumé

Background: The associations between longitudinal dynamics and the breadth of SARS-CoV-2 neutralizing antibody response with various Long COVID (LC) phenotypes prior to vaccination are not known. The capacity of antibodies to cross neutralize a variety of viral variants may be associated with ongoing pathology and persistent symptoms. Methods: We measured longitudinal neutralizing and cross-neutralizing antibody responses to pre- and post-SARS-CoV-2 Omicron variants in participants infected during the early waves of the COVID-19 pandemic, prior to wide-spread rollout of SARS-CoV-2 vaccines. Cross sectional regression models adjusted for various clinical covariates and longitudinal mixed effects models were used to determine the impact of the breadth and rate of decay of neutralizing responses on the development of Long COVID symptoms in general, as well as LC phenotypes. Results: We identified several novel relationships between SARS-CoV-2 antibody neutralization and the presence of LC symptoms. Specifically, we show that, although neutralizing antibody responses to the original, infecting strain of SARS-CoV-2 were not associated with LC in cross-sectional analyses, cross-neutralization ID50 levels to the Omicron BA.5 variant approximately 4 months following acute infection was independently and significantly associated with greater odds of LC and with persistent gastrointestinal and neurological symptoms. Longitudinal modeling demonstrated significant associations in the overall levels and rates of decay of neutralization capacity with LC phenotypes. A higher proportion of participants had antibodies capable of neutralizing Omicron BA.5 compared with BA.1 or XBB.1.5 variants. Conclusions: Our findings suggest that relationships between various immune responses and LC are likely complex but may involve the breadth of antibody neutralization responses.


Sujets)
Manifestations neurologiques , Syndrome respiratoire aigu sévère , COVID-19
3.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.02.06.23285532

Résumé

Some individuals do not return to baseline health following SARS-CoV-2 infection, leading to a condition known as Long COVID. The underlying pathophysiology of Long COVID remains unknown. Given that autoantibodies have been found to play a role in severity of COVID infection and certain other post-COVID sequelae, their potential role in Long COVID is important to investigate. Here we apply a well-established, unbiased, proteome-wide autoantibody detection technology (PhIP-Seq) to a robustly phenotyped cohort of 121 individuals with Long COVID, 64 individuals with prior COVID-19 who reported full recovery, and 57 pre-COVID controls. While a distinct autoreactive signature was detected which separates individuals with prior COVID infection from those never exposed to COVID, we did not detect patterns of autoreactivity that separate individuals with Long COVID relative to individuals fully recovered from SARS-CoV-2 infection. These data suggest that there are robust alterations in autoreactive antibody profiles due to infection; however, no association of autoreactive antibodies and Long COVID was apparent by this assay.


Sujets)
COVID-19
4.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.09.20.22280170

Résumé

ABSTRACT Importance Estimating the true burden of SARS-CoV-2 infection has been difficult in sub-Saharan Africa due to asymptomatic infections and inadequate testing capacity. Antibody responses from serologic surveys can provide an estimate of SARS-CoV-2 exposure at the population level. Objective To estimate SARS-CoV-2 seroprevalence, attack rates, and re-infection in eastern Uganda using serologic surveillance from 2020 to early 2022. Design Plasma samples from participants in the Program for Resistance, Immunology, Surveillance, and Modeling of Malaria in Uganda (PRISM) Border Cohort were obtained at four sampling intervals: October-November 2020; March-April 2021; August-September 2021; and February-March 2022. Setting: Tororo and Busia districts, Uganda. Participants 1,483 samples from 441 participants living in 76 households were tested. Each participant contributed up to 4 time points for SARS-CoV-2 serology, with almost half of all participants contributing at all 4 time points, and almost 90% contributing at 3 or 4 time points. Information on SARS-CoV-2 vaccination status was collected from participants, with the earliest reported vaccinations in the cohort occurring in May 2021. Main Outcome(s) and Measure(s) The main outcomes of this study were antibody responses to the SARS-CoV-2 spike protein as measured with a bead-based serologic assay. Individual-level outcomes were aggregated to population-level SARS-CoV-2 seroprevalence, attack rates, and boosting rates. Estimates were weighted by the local age distribution based on census data. Results By the end of the Delta wave and before widespread vaccination, nearly 70% of the study population had experienced SARS-CoV-2 infection. During the subsequent Omicron wave, 85% of unvaccinated, previously seronegative individuals were infected for the first time, and ∼50% or more of unvaccinated, already seropositive individuals were likely re-infected, leading to an overall 96% seropositivity in this population. Our results suggest a lower probability of re-infection in individuals with higher pre-existing antibody levels. We found evidence of household clustering of SARS-CoV-2 seroconversion. We found no significant associations between SARS-CoV-2 seroconversion and gender, household size, or recent Plasmodium falciparum malaria exposure. Conclusions and Relevance Findings: from this study are consistent with very high infection rates and re-infection rates for SARS-CoV-2 in a rural population from eastern Uganda throughout the pandemic.


Sujets)
Encéphalite à arbovirus , Maladie de la frontière , Paludisme à Plasmodium falciparum , COVID-19 , Paludisme
5.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.09.02.22279519

Résumé

Background: Causes of non-malarial fevers in sub-Saharan Africa remain understudied. We hypothesized that metagenomic next-generation sequencing (mNGS), which allows for broad genomic-level detection of infectious agents in a biological sample, can systematically identify potential causes of non-malarial fevers. Methods and Findings: The 212 participants in this study were of all ages and were enrolled in a longitudinal malaria cohort in eastern Uganda. Between December 2020 and August 2021, respiratory swabs and plasma samples were collected at 313 study visits where participants presented with fever and were negative for malaria by microscopy. Samples were analyzed using CZ ID, a web-based platform for microbial detection in mNGS data. Overall, viral pathogens were detected at 123 of 313 visits (39%). SARS-CoV-2 was detected at 11 visits, from which full viral genomes were recovered from nine. Other prevalent viruses included Influenza A (14 visits), RSV (12 visits), and three of the four strains of seasonal coronaviruses (6 visits). Notably, 11 influenza cases occurred between May and July 2021, coinciding with when the Delta variant of SARS-CoV-2 was circulating in this population. The primary limitation of this study is that we were unable to estimate the contribution of bacterial microbes to non-malarial fevers, due to the difficulty of distinguishing bacterial microbes that were pathogenic from those that were commensal or contaminants. Conclusions: These results revealed the co-circulation of multiple viral pathogens likely associated with fever in the cohort during this time period. This study illustrates the utility of mNGS in elucidating the multiple causes of non-malarial febrile illness. A better understanding of the pathogen landscape in different settings and age groups could aid in informing diagnostics, case management, and public health surveillance systems.


Sujets)
Paludisme , Syndrome euthyroïdien , Fièvre
6.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.01.25.22269670

Résumé

SARS-CoV-2-specific CD4+ T cells are likely important in immunity against COVID-19, but our understanding of CD4+ longitudinal dynamics following infection and specific features that correlate with the maintenance of neutralizing antibodies remains limited. We characterized SARS-CoV-2-specific CD4+ T cells in a longitudinal cohort of 109 COVID-19 outpatients. The quality of the SARS-CoV-2-specific CD4+ response shifted from cells producing IFN{gamma} to TNF+ from five days to four months post-enrollment, with IFN{gamma}-IL21-TNF+ CD4+ T cells the predominant population detected at later timepoints. Greater percentages of IFN{gamma}-IL21-TNF+ CD4+ T cells on day 28 correlated with SARS-CoV-2 neutralizing antibodies measured seven months post-infection ({rho}=0.4, P=0.01). mRNA vaccination following SARS-CoV-2 infection boosted both IFN{gamma} and TNF producing, spike protein-specific CD4+ T cells. These data suggest that SARS-CoV-2-specific, TNF-producing CD4+ T cells may play an important role in antibody maintenance following COVID-19.


Sujets)
COVID-19
7.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.10.06.21264573

Résumé

Disease outbreaks often highlight existing inequalities and injustices within society. The COVID 19 pandemic has underscored long-existing health inequalities, both within countries and between the Global North and South. These disparities have been observed throughout the pandemic, from disparities in the severity and impact of the initial waves of cases to disparities in who was most protected during the roll-out of vaccination. As the Delta variant surges in many countries, structural inequalities shape the trajectory of the pandemic and exacerbate existing health disparities. In the age of vaccination, the double burden of disparities in both exposure to infection and vaccination coverage intersect to determine the current and future patterns of infection, immunity, and mortality. It is important to consider the ways in which these disparities, with overlapping but distinct drivers, interact to determine population-level immunity and the burden of COVID 19 in different communities. Individuals or communities can experience different pathways to immunity, whether through infection, vaccination, or both. Using San Francisco as a case study, we show how a seroepidemiological approach can illuminate disparities in the pathway to immunity.


Sujets)
COVID-19 , Maladies du système immunitaire
8.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.09.09.21263139

Résumé

Serosurveys are a key resource for measuring SARS-CoV-2 cumulative incidence. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce adjusted estimates of seroprevalence from raw serosurvey results that account for these sources of spectrum bias. We incorporate data on antibody responses on multiple assays from a post-infection longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals may have been infected. We applied this method to produce adjusted seroprevalence estimates from five large-scale SARS-CoV-2 serosurveys across different settings and study designs. We identify substantial differences between reported and adjusted estimates of over two-fold in the results of some surveys, and provide a tool for practitioners to generate adjusted estimates with pre-set or custom parameter values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from these studies requires properly accounting for both population-level epidemiologic context and individual-level immune dynamics.


Sujets)
Ossification du ligament longitudinal postérieur
9.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.08.27.21262687

Résumé

The great majority of SARS-CoV-2 infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, mild to moderate infections are an important contributor to ongoing transmission. There remains a critical need to identify host immune biomarkers predictive of clinical and virologic outcomes in SARS-CoV-2-infected patients. Leveraging longitudinal samples and data from a clinical trial of Peginterferon Lambda for treatment of SARS-CoV-2 infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients within the first 2 weeks of symptom onset. We define early immune signatures, including plasma levels of RIG-I and the CCR2 ligands (MCP1, MCP2 and MCP3), associated with control of oropharyngeal viral load, the degree of symptom severity, and immune memory (including SARS-CoV-2-specific T cell responses and spike (S) protein-binding IgG levels). We found that individuals receiving BNT162b2 (Pfizer-BioNTech) vaccine had similar early immune trajectories to those observed in this natural infection cohort, including the induction of both inflammatory cytokines (e.g. MCP1) and negative immune regulators (e.g. TWEAK). Finally, we demonstrate that machine learning models using 8-10 plasma protein markers measured early within the course of infection are able to accurately predict symptom severity, T cell memory, and the antibody response post-infection.


Sujets)
Syndrome respiratoire aigu sévère , COVID-19
10.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-847082.v1

Résumé

The great majority of SARS-CoV-2 infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, there is substantial heterogeneity in SARS-CoV-2-specific memory immune responses following infection. There remains a critical need to identify host immune biomarkers predictive of clinical and immunologic outcomes in SARS-CoV-2-infected patients. Leveraging longitudinal samples and data from a clinical trial in SARS-CoV-2 infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients within the first 2 weeks of symptom onset. We identify early immune signatures, including plasma RIG-I levels, early interferon signaling, and related cytokines (CXCL10, MCP1, MCP-2 and MCP-3) associated with subsequent disease progression, control of viral shedding, and the SARS-CoV-2 specific T cell and antibody response measured up to 7 months after enrollment. We found that several biomarkers for immunological outcomes are shared between individuals receiving BNT162b2 (Pfizer–BioNTech) vaccine and COVID-19 patients. Finally, we demonstrate that machine learning models using 7-10 plasma protein markers measured early within the course of infection are able to accurately predict disease progression, T cell memory, and the antibody response post-infection in a second, independent dataset.


Sujets)
COVID-19
11.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-819495.v1

Résumé

Background: In March 2020, the government of Uganda implemented a strict lockdown policy in response to the COVID-19 pandemic. We performed an interrupted time series analysis (ITSA) to assess whether major changes in healthcare seeking behavior, malaria burden, and case management occurred after the onset of the COVID-19 epidemic. Methods Individual level data from all outpatient visits occurring from April 2017 through March 2021 at 17 facilities were analyzed. Outcomes included total outpatient visits, malaria cases, non-malarial visits, proportion of visits with suspected malaria, proportion of patients tested using rapid diagnostic tests (RDTs), and proportion of malaria cases prescribed artemether-lumefantrine (AL). Pre-COVID trends measured over a three-year period were extrapolated into the post-COVID period (April 2020- March 2021) using Poisson regression with generalized estimating equations or fractional regression. Effects of COVID-19 were estimated over the 12-month post-COVID period by dividing observed values by the predicted values and expressed as ratios. Results A total of 1,442,737 outpatient visits were recorded. Malaria was suspected in 55.3% of visits and 98.8% of these had a malaria diagnostic test performed. ITSA showed no differences in the observed versus predicted total outpatient visits, malaria cases, non-malarial visits, or proportion of visits with suspected malaria. However, in the second six months of the post-COVID period, there was a smaller mean proportion of patients tested with RDTs compared to predicted (Relative Prevalence Ratio (RPR) = 0.87, CI [0.78, 0.97]) and a smaller mean proportion of malaria cases prescribed AL (RPR = 0.94, CI [0.90, 0.99]. Conclusions There was evidence for a modest decrease in the proportion of RDTs used for malaria diagnosis and the proportion of patients prescribed AL in the second half of the post-COVID year, while other malaria indicators remained stable. Continued surveillance will be essential to monitor for changes in trends in malaria indicators so that Uganda can quickly and flexibly respond to challenges imposed by COVID-19.


Sujets)
COVID-19 , Paludisme , Hépatite E
12.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.07.09.21260287

Résumé

BACKGROUND: The biological processes associated with post-acute sequelae of SARS-CoV-2 infection (PASC) are unknown. METHODS: We measured soluble markers of inflammation in a SARS-CoV-2 recovery cohort at early (<90 days) and late (>90 days) timepoints. We defined PASC as the presence of one or more COVID-19-attributed symptoms beyond 90 days. We compared fold-changes in marker values between those with and without PASC using mixed effects models with terms for PASC and early and late recovery time periods. RESULTS: During early recovery, those who went on to develop PASC generally had higher levels of cytokine biomarkers including TNF-alpha (1.14-fold higher mean ratio, 95%CI 1.01-1.28, p=0.028) and IP-10 (1.28-fold higher mean ratio, 95%CI 1.01-1.62, p=0.038). Among those with PASC, there was a trend toward higher IL-6 levels during early recovery (1.28-fold higher mean ratio, 95%CI 0.98-1.70, p=0.07) which became more pronounced in late recovery (1.44-fold higher mean ratio, 95%CI: 1.11-1.86, p<0.001). These differences were more pronounced among those with a greater number of PASC symptoms. CONCLUSIONS: Persistent immune activation may be associated with ongoing symptoms following COVID-19. Further characterization of these processes might identify therapeutic targets for those experiencing PASC.


Sujets)
COVID-19 , Inflammation
13.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.05.07.21249238

Résumé

Serology has provided valuable diagnostic and epidemiological data on antibody responses to SARS-CoV-2 in diverse patient cohorts. Deployment of high content, multiplex serology platforms across the world, including in low and medium income countries, can accelerate longitudinal epidemiological surveys. Here we report multiSero, an open platform to enable multiplex serology with up to 48 antigens in a 96-well format. The platform consists of three components: ELISA-array of printed proteins, a commercial or home-built plate reader, and modular python software for automated analysis (pysero). We validate the platform by comparing antibody titers against the SARS-CoV-2 Spike, receptor binding domain (RBD), and nucleocapsid (N) in 114 sera from COVID-19 positive individuals and 87 pre-pandemic COVID-19 negative sera. We report data with both a commercial plate reader and an inexpensive, open plate reader (nautilus). Receiver operating characteristic (ROC) analysis of classification with single antigens shows that Spike and RBD classify positive and negative sera with the highest sensitivity at a given specificity. The platform distinguished positive sera from negative sera when the reactivity of the sera was equivalent to the binding of 1 ng mL-1 RBD-specific monoclonal antibody. We developed normalization and classification methods to pool antibody responses from multiple antigens and multiple experiments. Our results demonstrate a performant and accessible pipeline for multiplexed ELISA ready for multiple applications, including serosurveillance, identification of viral proteins that elicit antibody responses, differential diagnosis of circulating pathogens, and immune responses to vaccines.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
14.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.11.21252311

Résumé

BACKGROUND: As the coronavirus disease 2019 (COVID-19) pandemic continues and millions remain vulnerable to infection with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), attention has turned to characterizing post-acute sequelae of SARS-CoV-2 infection (PASC). METHODS: From April 21 to December 31, 2020, we assembled a cohort of consecutive volunteers who a) had documented history of SARS-CoV-2 RNA-positivity; b) were [≥] 2 weeks past onset of COVID-19 symptoms or, if asymptomatic, first test for SARS-CoV-2; and c) were able to travel to our site in San Francisco. Participants learned about the study by being identified on medical center-based registries and being notified or by responding to advertisements. At 4-month intervals, we asked participants about physical symptoms that were new or worse compared to the period prior to COVID-19, mental health symptoms and quality of life. We described 4 time periods: 1) acute illness (0-3 weeks), 2) early recovery (3-10 weeks), 3) late recovery 1 (12-20 weeks), and 4) late recovery 2 (28-36 weeks). Blood and oral specimens were collected at each visit. RESULTS: We have, to date, enrolled 179 adults. During acute SARS-CoV-2 infection, 10 had been asymptomatic, 125 symptomatic but not hospitalized, and 44 symptomatic and hospitalized. In the acute phase, the most common symptoms were fatigue, fever, myalgia, cough and anosmia/dysgeusia. During the post-acute phase, fatigue, shortness of breath, concentration problems, headaches, trouble sleeping and anosmia/dysgeusia were the most commonly reported symptoms, but a variety of others were endorsed by at least some participants. Some experienced symptoms of depression, anxiety, and post-traumatic stress, as well as difficulties with ambulation and performance of usual activities. The median visual analogue scale value rating of general health was lower at 4 and 8 months (80, interquartile range [IQR]: 70-90; and 80, IQR 75-90) compared to prior to COVID-19 (85; IQR 75-90). Biospecimens were collected at nearly 600 participant-visits. CONCLUSION: Among a cohort of participants enrolled in the post-acute phase of SARS-CoV-2 infection, we found many with persistent physical symptoms through 8 months following onset of COVID-19 with an impact on self-rated overall health. The presence of participants with and without symptoms and ample biological specimens will facilitate study of PASC pathogenesis. Similar evaluations in a population-representative sample will be needed to estimate the population-level prevalence of PASC.


Sujets)
Infections à coronavirus , Troubles anxieux , Céphalée , Dyspnée , Fièvre , Trouble dépressif , Toux , Dysgueusie , Myalgie , COVID-19 , Troubles de stress traumatique , Fatigue
15.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.03.09.434529

Résumé

Type I interferon (IFN-I) neutralizing autoantibodies have been found in some critical COVID-19 patients; however, their prevalence and longitudinal dynamics across the disease severity scale, and functional effects on circulating leukocytes remain unknown. Here, in 284 COVID-19 patients, we found IFN-I autoantibodies in 19% of critical, 6% of severe and none of the moderate cases. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell epitope and transcriptome sequencing from 54 COVID-19 patients, 15 non-COVID-19 patients and 11 non-hospitalized healthy controls, revealed a lack of IFN-I stimulated gene (ISG-I) response in myeloid cells from critical cases, including those producing anti-IFN-I autoantibodies. Moreover, surface protein analysis showed an inverse correlation of the inhibitory receptor LAIR-1 with ISG-I expression response early in the disease course. This aberrant ISG-I response in critical patients with and without IFN-I autoantibodies, supports a unifying model for disease pathogenesis involving ISG-I suppression via convergent mechanisms.


Sujets)
COVID-19
16.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.03.21251639

Résumé

Serosurveillance studies are critical for estimating SARS-CoV-2 transmission and immunity, but interpretation of results is currently limited by poorly defined variability in the performance of antibody assays to detect seroreactivity over time in individuals with different clinical presentations. We measured longitudinal antibody responses to SARS-CoV-2 in plasma samples from a diverse cohort of 128 individuals over 160 days using 14 binding and neutralization assays. For all assays, we found a consistent and strong effect of disease severity on antibody magnitude, with fever, cough, hospitalization, and oxygen requirement explaining much of this variation. We found that binding assays measuring responses to spike protein had consistently higher correlation with neutralization than those measuring responses to nucleocapsid, regardless of assay format and sample timing. However, assays varied substantially with respect to sensitivity during early convalescence and in time to seroreversion. Variations in sensitivity and durability were particularly dramatic for individuals with mild infection, who had consistently lower antibody titers and represent the majority of the infected population, with sensitivities often differing substantially from reported test characteristics (e.g., amongst commercial assays, sensitivity at 6 months ranged from 33% for ARCHITECT IgG to 98% for VITROS Total Ig). Thus, the ability to detect previous infection by SARS-CoV-2 is highly dependent on the severity of the initial infection, timing relative to infection, and the assay used. These findings have important implications for the design and interpretation of SARS-CoV-2 serosurveillance studies.


Sujets)
Fièvre , Toux
17.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.02.26.21252308

Résumé

A detailed understanding of long-term SARS-CoV-2-specific T cell responses and their relationship to humoral immunity and markers of inflammation in diverse groups of individuals representing the spectrum of COVID-19 illness and recovery is urgently needed. Data are also lacking as to whether and how adaptive immune and inflammatory responses differ in individuals that experience persistent symptomatic sequelae months following acute infection compared to those with complete, rapid recovery. We measured SARS-CoV-2-specific T cell responses, soluble markers of inflammation, and antibody levels and neutralization capacity longitudinally up to 9 months following infection in a diverse group of 70 individuals with PCR-confirmed SARS-CoV-2 infection. The participants had varying degrees of initial disease severity and were enrolled in the northern California Long-term Impact of Infection with Novel Coronavirus (LIINC) cohort. Adaptive T cell responses remained remarkably stable in all participants across disease severity during the entire study interval. Whereas the magnitude of the early CD4+ T cell immune response is determined by the severity of initial infection (participants requiring hospitalization or intensive care), pre-existing lung disease was significantly associated with higher long-term SARS-CoV2-specific CD8+ T cell responses, independent of initial disease severity or age. Neutralizing antibody levels were strongly correlated with SARS-CoV-2-specific CD4+ T but not CD8+ T cell responses. Importantly, we did not identify substantial differences in long-term virus-specific T cell or antibody responses between participants with and without COVID-19-related symptoms that persist months after initial infection.


Sujets)
COVID-19 , Troubles de l'endormissement et du maintien du sommeil , Inflammation , Maladies pulmonaires
18.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-180966.v1

Résumé

Serosurveillance provides a unique opportunity to quantify the proportion of the population that has been exposed to pathogens. Here, we developed and piloted Serosurveillance for Continuous, ActionabLe Epidemiologic Intelligence of Transmission (SCALE-IT), a platform through which we systematically tested remnant samples from routine blood draws in two major hospital networks in San Francisco for SARS-CoV-2 antibodies during the early months of the pandemic. Importantly, SCALE-IT allows for algorithmic sample selection and rich data on covariates by leveraging electronic medical record data. We estimated overall seroprevalence at 4.2%, corresponding to a case ascertainment rate of only 4.9%, and identified important heterogeneities by neighborhood, homelessness status, and race/ethnicity. Neighborhood seroprevalence estimates from SCALE-IT were comparable to local community-based surveys, while providing results encompassing the entire city that have been previously unavailable. Leveraging this hybrid serosurveillance approach has strong potential for application beyond this local context and for diseases other than SARS-CoV-2.

19.
ssrn; 2021.
Preprint Dans Anglais | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3745843

Résumé

Background: Airline travel has been significantly reduced during the COVID-19 pandemic due to concern for individual risk of SARS-CoV-2 infection and population-level transmission risk from importation. Routine viral testing strategies for COVID-19 may facilitate safe airline travel through reduction of individual and/or population-level risk, although the effectiveness and optimal design of these “test-and-travel” strategies remain unclear.Methods: We developed a microsimulation of SARS-CoV-2 transmission in a cohort of airline travelers to evaluate the effectiveness of various testing strategies to reduce individual risk of infection and population-level risk of transmission. We evaluated five testing strategies in asymptomatic passengers: i) anterior nasal polymerase chain reaction (PCR) within 3 days of departure; ii) PCR within 3 days of departure and PCR 5 days after arrival; iii) rapid antigen test on the day of travel (assuming 90% of the sensitivity of PCR during active infection); iv) rapid antigen test on the day of travel and PCR 5 days after arrival; and v) PCR within 3 days of arrival alone. The travel period was defined as three days prior to the day of travel and two weeks following the day of travel, and we assumed passengers followed guidance on mask wearing during this period. The primary study outcome was cumulative number of infectious days in the cohort over the travel period (population-level transmission risk); the secondary outcome was the proportion of infectious persons detected on the day of travel (individual-level risk of infection). Sensitivity analyses were conducted.Findings: Assuming a community SARS-CoV-2 incidence of 50 daily infections, we estimated that in a cohort of 100,000 airline travelers followed over the travel period, there would be a total of 2,796 (95% UI: 2,031, 4,336) infectious days with 229 (95% UI: 170, 336) actively infectious passengers on the day of travel. The pre-travel PCR test (within 3 days prior to departure) reduced the number of infectious days by 35% (95% UI: 27, 42) and identified 88% (95% UI: 76, 94) of the actively infectious travelers on the day of flight; the addition of PCR 5 days after arrival reduced the number of infectious days by 79% (95% UI: 71, 84). The rapid antigen test on the day of travel reduced the number of infectious days by 32% (95% UI: 25, 39) and identified 87% (95% UI: 81, 92) of the actively infectious travelers; the addition of PCR 5 days after arrival reduced the number of infectious days by 70% (95% UI: 65, 75). The post-travel PCR test alone (within 3 days of landing) reduced the number of infectious days by 42% (95% UI: 31, 51). The ratio of true positives to false positives varied with the incidence of infection. The overall study conclusions were robust in sensitivity analysis.Interpretation: Routine asymptomatic testing for COVID-19 prior to travel can be an effective strategy to reduce individual risk of COVID-19 infection during travel, although post-travel testing with abbreviated quarantine is likely needed to reduce population-level transmission due to importation of infection when traveling from a high to low incidence setting.Funding: NCL is supported by the University of California, San Francisco (Department of Medicine). MVK is supported in part by the National Institute on Drug Abuse of the National Institutes of Health (K99DA051534).Conflict of Interest: NCL has received grants and personal fees from the World Health Organization and the California Department of Public Health unrelated to the current study. GWR has received funding from the San Francisco Department of Public Health and the California Department of Public Health for COVID-19-related work unrelated to the current study.


Sujets)
COVID-19
20.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.12.08.20246132

Résumé

BackgroundAirline travel has been significantly reduced during the COVID-19 pandemic due to concern for individual risk of SARS-CoV-2 infection and population-level transmission risk from importation. Routine viral testing strategies for COVID-19 may facilitate safe airline travel through reduction of individual and/or population-level risk, although the effectiveness and optimal design of these "test-and-travel" strategies remain unclear. MethodsWe developed a microsimulation of SARS-CoV-2 transmission in a cohort of airline travelers to evaluate the effectiveness of various testing strategies to reduce individual risk of infection and population-level risk of transmission. We evaluated five testing strategies in asymptomatic passengers: i) anterior nasal polymerase chain reaction (PCR) within 3 days of departure; ii) PCR within 3 days of departure and PCR 5 days after arrival; iii) rapid antigen test on the day of travel (assuming 90% of the sensitivity of PCR during active infection); iv) rapid antigen test on the day of travel and PCR 5 days after arrival; and v) PCR within 3 days of arrival alone. The travel period was defined as three days prior to the day of travel and two weeks following the day of travel, and we assumed passengers followed guidance on mask wearing during this period. The primary study outcome was cumulative number of infectious days in the cohort over the travel period (population-level transmission risk); the secondary outcome was the proportion of infectious persons detected on the day of travel (individual-level risk of infection). Sensitivity analyses were conducted. FindingsAssuming a community SARS-CoV-2 incidence of 50 daily infections, we estimated that in a cohort of 100,000 airline travelers followed over the travel period, there would be a total of 2,796 (95% UI: 2,031, 4,336) infectious days with 229 (95% UI: 170, 336) actively infectious passengers on the day of travel. The pre-travel PCR test (within 3 days prior to departure) reduced the number of infectious days by 35% (95% UI: 27, 42) and identified 88% (95% UI: 76, 94) of the actively infectious travelers on the day of flight; the addition of PCR 5 days after arrival reduced the number of infectious days by 79% (95% UI: 71, 84). The rapid antigen test on the day of travel reduced the number of infectious days by 32% (95% UI: 25, 39) and identified 87% (95% UI: 81, 92) of the actively infectious travelers; the addition of PCR 5 days after arrival reduced the number of infectious days by 70% (95% UI: 65, 75). The post-travel PCR test alone (within 3 days of landing) reduced the number of infectious days by 42% (95% UI: 31, 51). The ratio of true positives to false positives varied with the incidence of infection. The overall study conclusions were robust in sensitivity analysis. InterpretationRoutine asymptomatic testing for COVID-19 prior to travel can be an effective strategy to reduce individual risk of COVID-19 infection during travel, although post-travel testing with abbreviated quarantine is likely needed to reduce population-level transmission due to importation of infection when traveling from a high to low incidence setting.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche